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676 Properties and Models of the Nucleus

Figure 14-5
Stable and radioactive isobars at low mass number. Isotopic abundances are quoted for the
stable nuclides, and radioactive half-lives are given for the unstable isobars.
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mass numbers as qualitative indications of the unusual stability of the 4 = 4 nuclide
*He. The two gaps tell us that it is not favorable to add one more nucleon to the
A = 4 system or to bind two such systems together.

We learn several interesting lessons just by counting the nuclides according to the
following four possible combinations of proton and neutron numbers. Of the 268
existing stable nuclei (including those that are extremely long-lived), there are

159 with even Z and even N (even-even),
53 with even Z and odd N (even—odd), —
. odd 4 even A4

50 with odd Z and even N (odd-even), ——— J

and 6 withodd Z and odd N (odd—odd).

The stable odd-4 nuclei exist in roughly equal numbers of even-odd and odd-even
varieties. This observation is a hint that the nuclear force does not distinguish between
protons and neutrons. The distribution of the stable even-4 nuclei is more remarkable
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Figurs 14-6
Schematic plan of Hofstadter’s electron-scattering experiment.
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experiments in which electrons are scattered by the nucleus. These data can be used to
determine the nuclear radius.

The electron-scattering experiments had to wait for the construction of high-energy
electron accelerators. A comprehensive series of investigations of nuclei was finally
undertaken by R. Hofstadter and his associates in 1953. Eventually, these studies were
extended to include measurements of the internal electromagnetic structure of the
proton and the neutron. Thus, the whole range of electron-scattering experiments gave
a description of the constituents of the nucleus as well as the nucleus itself.

Figure 14-6 shows a sketch describing Hofstadter’s means of observation of the

elastic-scattering process

e+ X —-e+ X,

The equipment includes an electron accelerator and deflecting magnets to prepare the
high-energy electron beam, a scattering target of species X, and a spectrometer to
detect electrons scattered elastically in directions given by the indicated scattering
angle 6. This apparatus constitutes an elaborate high-energy device for the study of
electron diffraction, since the angular distribution of the scattered electrons has the
appearance of a diffraction pattern. We represent these observations by means of the
differential cross section do/dQ for elastic electron scattering, an angle-dependent
quantity analogous to the Rutherford cross section for the scattering of @ particles.
Experimental values of do/dQ are plotted in Figure 14-7 for a single beam energy
and for several nuclear targets. We see the characteristic features of a diffraction
pattern in each of the graphs, as the cross sections fall rapidly from the forward
diréction at # = 0 and exhibit small peaks at other angles.

The behavior of da/dQ is similar to the diffraction of light by a spherical obstacle
with a dense interior and a diffuse surface. A good characterization of electron
scattering can be given in these terms by adopting a spherical model of the nucleus in
which the nuclear charge density has the form

: Py
o(r) = T om7m- (14-2)
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Figure 14-7

Differential cross sections for elastic electron scattering at 183 MeV. Data are plotted versus
scattering angle § for calcium, indium, and gold targets.
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This expression is like a Fermi distribution in which the two parameters R and 2,

control the r dependence. The coefficient py is proportional to the central charge
density

Py
p(0) = 7>
so that p; and p(0) are approximately equal for R > z,. We can interpret the
significance of these features with the aid of Figure 14-8. The illustrated charge
density falls through the value p,/2 at r = R, dropping from 90% to 10% of the
maximum density over a small distance given by the indicated surface thickness ¢.
The latter quantity is directly related to the parameter z, in Equation (14-2). We
leave the derivation of this relation to Problem 3 at the end of the chapter.

The treatment of electron-scattering data for different beamn energies and various
nuclei leads to the deduction of charge densities like the ones shown in Figure 14-9.
We select these particular results to correspond to the cross sections plotted in Figure
14-7. The graphs indicate a decrease of the central charge density p(0) and an
increase of the radius parameter R as nuclei of increasing nucleon number are
considered, while the surface thickness remains essentially unchanged. This analysis
determines a nuclear radius R that grows with mass number A according to the
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Fig. 4.2. It should be stressed that the choice of this expression has no fundamental
(), describe significance, it just conveniently describes a charge distribution which
meters, and extends almost uniformly from the centre of the nucleus to a distance
ta. A form R, and falls to zero over a well-defined surface region of thickness ~ a.

This picture is consistent with the results of direct inversion.
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Fig. 4.2 The electric charge density of 2%Pb from a model-independent analysis
of electron scattering data. The bars indicate the uncertainty. (Friar, J. L. &
Negele, J. W. (1973), Nucl. Phys. A212, 93)

In Fig. 4.3 we show nuclear charge distributions for a light ('ZO), a
medium (‘ﬂgAg) and a heavy (2g§Pb) nucleus obtained from experimental
scattering data, using this parametrisation of the charge density. The
corresponding values of R and a are given in Table 4.1.

As the examples in the table indicate, it appears that there is a well-
defined ‘surface region’ which has much the same width for all nuclei,

even light ones.
4.2 Muon interactions

The negative muon is another leptonic probe of nuclear charge. Its prop-
erties, other than its mass of m, ~ 207 m, and its mean life of

Table 4.1. Nuclear radii (R) and nuclear surface widths (a)

R a R/ A}
Nucleus (fm) (fm) (fm)
o 2.61 0.513 1.04
1% Ag 5.33 0.523 1.12
2Pb 6.65 0.526 1.12
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Fig. 43 The electric charge density of three nuclei as fitted by
pen(r) = p2,,/[1 +exp((r — R)/a)]. The parameters are taken from the compila-
tion in Barrett, R. C. & Jackson, D. F. (1977), Nuclear Sizes and Structure,
Oxford: Clarendon Press.

2.2 x 1075 s, are similar to those of the electron. However, the radius of
its lowest Bohr orbit in an atom of charge Z is (47e,) hz/muZez, and this
is smaller than the corresponding electron orbit by a factor (1, /m,). For .
Z = 50 the radius is only 5 fm. Hence the wave-functions of the lowest
muonic states will lie to a considerable extent within the distribution of
nuclear charge, particularly in heavy nuclei, and the energies of these
states will therefore depend on the details of the nuclear charge distribu-
tion. '

Experimentally, negative muons are produced in the target material
by the decay of a beam of negative pions, and are eventually captured in
outer atomic orbitals. Before they decay, many muons fall into lower
orbits, emitting X-rays in the transitions. The measured energies of
these X-rays may be compared with those calculated with various choices
of parameters for p(r). Values of R and a, found in this way, agree well
with results from electron scattering. '

4.3 The distribution of nuclear matter in nuclei

From the distribution of charge in a nucleus, which as we have seen can

be determined by experiment, we can form some idea of the distribution
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of nuclear matter. If the proton were a point object, we could identify the
proton number density pp(r) With pe(r). Since the strong nuclear forces
which bind nucleons together are charge independent and of short range,
we can assume that to a good approximation the ratio of neutron density
pn to proton density p, is the same at all points in a nucleus, ie.
0a(P)/Pp(r) = N/Z. Then the total density of nucleons p = p, + pp Can
be expressed as p = (4/Z)pe,, wWhere A =N +Z. The resulting nuclear
matter densities for the same nuclei we took in Fig. 4.3 are plotted in Fig.
4.4. These densities are only approximate, since we have neglected the
finite size of both proton and neutron and the effect of Coulomb forces,
but they indicate that at the centre of a nucleus the nuclear matter density
- p is roughly the same for all nuclei. It increases with 4, but appears to
tend to a limiting value p, of about 0.17 nucleons fm~3 for large A. The
existence of this limiting value py, known as the ‘density of nuclear mat-
ter’, is an important result. Consistently with this, we find (Table 4.1),
that the ‘radius’ R of a nucleus is very closely proportional to A%, and,
approximately, (4r/ 3)R%py = A. We shall take

po = 0.17 nucleons fm™ 4.2)
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Fig. 44 The nucleon density of the nuclei of Fig. 4.3, with p(r) = (4/Z)pex(r)-
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Figure 14-8
Parametrization of the nuclear charge density.
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R = R,A'? (14-3).

and produces constant parameters with the approximate values

t=24fm and Ry=107fm

over the whole survey of nuclei. Other methods of determining the nuclear radius
confirm the 4 dependence of Equation (14-3). In general, these techniques employ the
parameter R, alone and yield values of R, in the range 1.18-1.40 fm.

The decrease of the central charge density p(0) is a noteworthy feature of Figure
14-9. This behavior opposes the tendency for neutrons to outnumber protons with

Figure 14-9

Nuclear charge densities deduced from electron scattering. The cases illustrated correspond to
the nuclei considered in Figure 14-7.
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which implies

R=1.12 4 fm.

4.4 The masses and binding energies of nuclei in their ground
states

It thus appears that a nucleus is rather like a spherical drop of liquid, of
nearly uniform density. How are we to understand its properties? A
nucleus is a quantum-mechanical system. We shall see later that its
excited states are generally separated by energies ~ 1 keV or more from
its ground state, so that to all intents and purposes nuclei in matter at
temperatures that are accessible on Earth are in their ground states. Like
any other finite system, a nucleus in its ground state has a well-defined
energy and a well-defined angular momentum. In this chapter we shall be
concerned with the ground-state energy. Other ground-state properties of
a nucleus will be discussed in the next chapter.

Since a nucleus is a bound system, an energy B(Z, N) is needed to pull
it completely apart into its Z protons and N neutrons. From the Einstein
relation between mass and energy, the binding energy B(Z, N) is related to
the mass m,,(Z, N) of the nucleus by

Muue(Z, N) = Zmy, + Nm,, — B(Z, N)/c?, 4.3)

and B(Z, N) must be positive for the nucleus to be formed. We shall see
that nuclear binding energies are of the order of 1% of the rest-mass
energy myy.c*.

Experimentally, the masses of atomic ions, rather than the masses of
bare nuclei, are the quantities usually measured directly. If m,(Z, N) is the

mass of the neutral atom,

ma(Z, N) = Z(mp + me) + Nmn - B(Za N)/6'2 - be]ectronic/cz"
4.49)

where bejectronic i the binding energy of the atomic electrons. These elec-
tronic contributions are, for many purposes, negligible. (The simple
Thomas-Fermi statistical model of a neutral atom gives the total electro-
nic bmdmg energy ~ 20. 8z eVv.)

Atomic masses are known very accurately, and pubhshed tables give

atomic masses rather than nuclear masses. Measurements in ‘mass spec-




